
TOKIO-TRACE
scoped, structured, async-aware diagnostics

so, who am I? my name is Eliza Weisman; I'm a systems
software engineer at
Buoyant here in San Francisco.
I've been writing Rust since 2015, and I've been doing it
professionally for
almost two years now.
I contribute to the tokio, tower, and linkerd 2 open
source projects.
Some of you have probably seen my twitter where I post
bad programming jokes
and pictures of my cats...

WHOIS?
eliza weisman
→ systems engineer at Buoyant
→ tokio, tower, linkerd 2, etc
→ @mycoliza on twitter
→ cat liker

twitter.com/mycoliza

A lot of you are probably wondering why we made another
logging library. We
already have logging.
Well first of all, I don't like to call it "logging". I prefer to call it
"GNU
slash logging".
Yes, that was a joke. But what I really prefer to call it is "in-
process
tracing". We'll talk about what that actually means a little later.
To answer this question, I'm going to start by asking some
questions of my
own.

WHY I MADEANOTHER
LOGGING LIBRARY

alright, show of hands...how
many of you are using futures?

HOW MANY OF YOU
ARE USINGFUTURES?

great. do your logs make any
sense? like at all?

AND DOES YOURLOGGING
MAKE ANY SENSE?

Yeah. Async is hard, right? pause for laughter
If you're writing a high-performance network application, you probably
need to use asynchronous programming. Async presents some
unique challenges to
diagnostics.
Execution is multiplexed between tasks. When a task is blocked on IO
or
another task, it yields, and we start executing another task. The task
will wake
back up when IO is ready.
Because of this, log messages can end up interleaved, or we can't tell
what
context a message happened in.

ASYNCHRONYIS HARD

What do we need in order to get
usable diagnostics from async
software?
The way I see it, there are three main
things we want our diagnostics to
capture: context, causality, and
structure.

HOW DO WE GET USABLE
DIAGNOSTICS
FROM ASYNC SYSTEMS?

Context. When we record that an event occurred, we don't just want
to know
where in the source code it happened, but in what runtime context as
well.
For example, if we have a server that's processing requests, the
context might
include: what client did this request come from? what where the
request's
method, path, and headers?
In synchronous code, we can infer context from the order that log
records
appear in. But in async code, we switch between contexts, so our
diagnostics
need to track them.

CONTEXT

Second, we want to capture causality. What other
events caused this event to
occur?
If some task is running in the background, say, a DNS
resolution, or a
database connection, what caused that task to start?
Which request required that
DNS resolution?
In async systems we can't rely on ordering to
determine causality. So again,
we need to record it.

CAUSALITY

Traditional logging is based on human-
readable text messages. We'd prefer our
diagnostics to record machine-readable
structured data.
This lets us interact with our diagnostic
data programmatically. You can
record typed values and interact with
them as numbers, booleans, and so on.

STRUCTURE

TIME FOR A

DEMO

So how does tokio-trace
actually work?

HOW TOKIO-TRACE
ACTUALLY WORKS

Is anyone here familiar with distributed tracing systems? Like
OpenTracing,
OpenCensus or Zipkin?
Okay, great. These are diagnostic tools for distributed systems. They're
designed for tracking contexts as they move from node to node, so
that you can
correlate events on one node with events on another.
A key insight behind tokio-trace is that asynchronous programs
are kind of
like distributed systems writ small. You have concurrently running
tasks that
communicate through fallible message passing. The only difference is
that
everything lives in one address space.

SO WHAT DID I MEAN BY
IN-PROCESSTRACING?

Our core primitives
instrumentation primitives are
spans and events.

CORE PRIMITIVES
SPANS AND

A span represents a period of time
where the program is executing in a
context.
Spans have beginnings and ends,
and we can enter and exit them as
we
switch between contexts.

SPANS
PERIODS OF TIME
span!("my_great_span").enter(|| {
 // do some stuff *inside* the span...
})

Events, on the other hand, represent
singular instants in time where
something
happened.
They're analagous to log records in
conventional logging. But unlike log
records, they exist in a span context.

EVENTS
MOMENTS IN TIME
event!(Level)*Info, "something happened!");

Fields are how we attach typed,
structured data to spans and events. A
field
is a key-value pair.
Tokio-trace subscribers can consume
field values as a subset of Rust
primitive
types.

FIELDS
ADD STRUCTURED DATA
event!(Level)*Info, foo = 3, bar = false);

To put it all together, here's a
little example. We're shaving
some yaks.

AN EXAMPLE

So we create a span called
"shaving yaks". We're going to
do all the work in
there. We annotate that span
with the number of yaks we're
shaving.

span!("shaving_yaks", yak_count = yaks.len()).enter(|| {

// for yak in yaks {
// span!("shave", current_yak = yak).enter(|| {
// match shave_yak(yak) {
// Ok(_) A> debug!(message = "yak shaved successfully"),
// Err(e) A> warn!(message = "yak shaving failed!", error = fieldGHdebug(e)),
// }
// })
// }

})

Then we loop over all the yaks, and
we create a new span, "shave", for
each one. The new span is inside
the "shaving yaks" span. We
record which yak
we're currently shaving as a field
on that span.

span!("shaving_yaks", yak_count = yaks.len()).enter(|| {

 for yak in yaks {
 span!("shave", current_yak = yak).enter(|| {
// match shave_yak(yak) {
// Ok(_) A> debug!(message = "yak shaved successfully"),
// Err(e) A> warn!(message = "yak shaving failed!", error = fieldGHdebug(e)),
// }
 })
 }

})

We call this "shave yak" function on the current
yak. Anything that happens
in that function is also inside the "shave" span,
which is nested inside the
"shaving yaks" span.
Then, we match on the return value of
"shave_yak", and record if it's Ok or an
Error. Since those events are inside the "shave"
span, they're annotated with
the yak we're shaving automatically.

span!("shaving_yaks", yak_count = yaks.len()).enter(|| {

 for yak in yaks {
 span!("shave", current_yak = yak).enter(|| {
 match shave_yak(yak) {
 Ok(_) @> debug!(message = "yak shaved successfully"),
 Err(e) @> warn!(message = "yak shaving failed!", error = fieldFGdebug(e)),
 }
 })
 }

})

Finally, we have a component called a Subscriber. Subscribers
are the
component that actually collects and records the trace data
generated by our
instrumentation.
You can think of a subscriber as being kind of like a logger. And like
loggers, Subscribers are pluggable. This is tokio-trace's main
extension point.
Libraries can provide subscribers that implement different
behavior. One might
print traces to standard out, another might record metrics, and
third might send
events to some distributed tracing system.

SUBSCRIBERS
COLLECT TRACE

We've tried to make tokio-
trace as easy to adopt as
possible. This includes
compatibility with other libraries you
might already be using.
Here are some examples of stuff
you can do.

HOW TO USE IT

It plays nice with futures. Here we're composing a future
with some
combinators.
We provide this new instrument combinator which lets
you attach a span to a
future. Whenever we poll this future, we'll enter the span
for the duration of
the poll.
This means that everything that happens in my_future,
or in the and_then
and map_err here, will be inside of the "my_future" span.

plays nice with futures
my_future
 .and_then(|result| {
 debug!("doing something...");
 do_something(result)
 })
 .map_err(|e| {
 warn!(error = field@Adebug(e));
 })
 .instrument(span!("my_future"));

We also have drop in
compatibility with the log
crate. Here I'm importing
log and using its info macro
to log a message. If I want to
switch to tokio-trace...

this compiles
#[macro_use]
extern crate log;

info!("log-style logging! foo={}; bar={}", 42, true);

All I have to do is change which crate I'm
importing.
Tokio-trace has macros that are a superset
of log's macros. They can do more
stuff than log, but they support all the
same syntax.
We also have adapters to let you convert
between log records and trace events.

...and so does this
#[macro_use]
extern crate tokio_trace;

info!("log-style logging! foo={}; bar={}", 42, true);

Any runtime instrumentation
has performance costs. Tokio-
trace's goal is to
ensure you don't pay any costs
you don't have to.
What does that mean?

ONLY PAY FOR
WHAT YOU USE

First of all, we've made sure that a
subscriber filters
out spans or events you don't want to
record, the overhead is basically a single
load and a branch --- under one
nanosecond.
We cache filter evaluations when possible
--- if something is always
disabled, we never need to re-filter it.

DISABLED
INSTRUMENTATION
IS (NEARLY)

Furthermore, we've left all the real overhead
up to subscriber implementations.
Since different use-cases have different
requirements --- some have to allocate
to track data, others need to make syscalls
to get timestamps --- tokio-trace
doesn't require that all subscribers pay
those costs.

SUBSCRIBERS
DON'T PAY COSTS
BY DEFAULT

let's see someDEMOS

It's worth noting that we're trying to
bootstrap a whole ecosystem here. We
released the core library on crates.io
today, but that's just the beginning.
There's a whole lot of neat stuff we can
build on top of tokio-trace together.
I'm sure I haven't even thought of all of
it yet.

BOOTSTRAPPING
AN ECOSYSTEM

So here's how you can get involved. The first thing you can do is just
try it
out. I love bug reports and feature requests, and I love PRs even more.
Second, if there's anything you want to see in the ecosystem, maybe
you want a
subscriber for your favorite metrics lib, or a different way of formatting
trace
logs, please share it! I can't wait to see what people build using
tokio-trace.
The core crates live in the tokio repo, and we have a "nursery" repo
for
less stable libraries. A lot of the utility and compatibility crates live
there.

GET INVOLVED
→ crates.io/crates/tokio-trace-core
→ github.com/tokio-rs/tokio
→ github.com/tokio-rs/tokio-trace-nursery

These are some of the folks who have already helped out a lot.
Carl Lerche, of course, is the original author of tokio, and he's given me
so much guidance throughout the whole process of writing tokio-trace.
I'd like to thank David Barsky for all the conversations we had during the
design and development of tokio-trace, and for the work he did on the
tokio-trace macros.
Ashley Mannix is working on adding structured logging to the log crate, and
we had some great discussions about how to ensure tokio-trace is compatible
with log. He also had some great advice for the design of the Value system.
Lucio Franco helped out with the nursery crates a lot, especially the format
subscriber.
Also, thanks to my partner Tristan, who listened to me practice this talk
several times even though they didn't really understand what it was about.
Finally, thanks to all of you for giving your time to listen to me speak about
tokio-trace today!'

thanks <3
→ Carl Lerche (@carllerche)
→ David Barsky (@davidbarsky)
→ Ashley Mannix (@KodrAus)
→ Lucio Franco (@LucioFranco)

Before I open the floor for questions,
here's how you can contact me if
you want to chat about tokio-trace,
tokio or linkerd.
Also, you can find the slides (and a
recording of this talk) at
elizas.website/slides. Feel free to take a
picture of this slide if you want to.

QUESTIONS?
→ email: eliza@buoyant.io
→ twitter: @mycoliza
→ slides: elizas.website/slides/
→ ...or, see me after class!

