) BUOYANT iikero

Writing Service Mesh
Controllers in Rust

Eliza Weisman, Linkerd maintainer

Eliza Weisman

Software Engineer, Buoyant

YW emycoliza

) BUOYANT

Rust is fast and
memory safe, all
without garbage
collection

(/ BUOYANT

T LINKERD

Ultralight, ultrafast, security-first
service mesh for Kubernetes.

Created by Buoyant
Goals: secure, efficient, fast

Data plane: proxies application
traffic

Control plane: tells the proxies
what to do

Linkerd + Rust

Pure Rust data plane since the
release of Linkerd 2

First Rust control plane
component released in Linkerd
217

) BUOYANT

Rust was the only choice for the proxy.

We didn't want GC pauses...
butwedidn’t want C++ CVEs, either.

) BUOYANT

Rust isn’t the only choice for the control
plane, butitis a good one (and we like it).

) BUOYANT

Rust has great language features
dev tools

libraries w

() BUOYANT

Linkerd’s control plane watches
Kubernetes resources and serves gRPC
APIs for the proxies

) BUOYANT

The policy controller indexes policy
resources and associates them with
ports on pods.

) BUOYANT

Writing controllers in Rust means talking
to Kubernetes, which means bindings for
the Kubernetes API.

) BUOYANT

.1‘ Crates.io Click or press 'S' to search... Browse All Crates | & Eliza Weisman v

kube v0.75.0 Follow

Kubernetes client and async controller runtime

#kubernetes #runtime #client

Readme 92 Versions Dependencies Dependents

kube-rs Metadata

6 days ago

crates.io [v0.75.0 | MsRv BRG] MK8SV v1 20 openssf best practices |passing
& Apache-2.0
chat 11697 online

A 10.1 kB
A Rust client for Kubernetes in the style of a more generic client-go, a runtime
abstraction inspired by controller-runtime, and a derive macro for CRDs inspired Install
by kubebuilder. Hosted by CNCF as a Sandbox Project Add the following line to your Cargo.toml file:
These crates build upon Kubernetes apimachinery + api concepts to enable kube = "0.75.0"
generic abstractions. These abstractions allow Rust reinterpretations of reflectors,
controllers, and custom resource interfaces, so that you can write applications Documentation

) BUOYANT

kube + rt = kubert

() BUOYANT

@ kubert - Rust

& DOCS.RS © kubert-011.0 v % Platform v |™ Feature flags @ Releases v Rust v

- - y s

Crate kubert
Version 0.11.0

All Items

Re-exports
Modules

Structs

Crates

kubert

pub use self::server: :Se 38 server

Modules

admin admin

client client

errors errors

index dindex

initialized
initialized
log log

requeue requeue

runtime runtime

server server

shutdown

shutdown

Structs

Admin server utilities.

Utilities for configuring a kube_client: :Client from the
command line

Utilities for handling errors

Utilities for maintaining a shared index derived from Kubernetes
resources.

A utility for waiting for components to be initialized.

Configures the global default tracing subscriber

A bounded, delayed, multi-producer, single-consumer queue for
deferring work in response to scheduler updates.

A controller runtime

Helpers for configuring and running an HTTPS server, especially
for admission controllers and API extensions

Drives graceful shutdown when the process receives a signal.

Error returned by try_+init if a global default subscriber could not be

initialized.

(/ BUOYANT

pub trait IndexNamespacedResource<T> {
fn apply(&mut self, resource: T);
fn delete(&mut self, namespace: String, name: String);
fn reset(
&nmut self,
resources: Vec<T>,
removed: HashMap<String, HashSet<String>>,

() BUOYANT

apiVersion: policy.linkerd.io/vi1betaT
kind: Server
metadata:

namespace: linkerd-viz

name: admin
spec:

podSelector:

matchLabels:

linkerd.io/extension: viz

port: admin-http
proxyProtocol: HTTP/1

#[derive(Clone, Debug, PartialEq, Eq)]
#[derive(kube: :CustomResource)]
#[derive(Deserialize, Serialize, JsonSchema)]
#[kube(

group = "policy.linkerd.io",

version = "vilbetal",

kind = "Server",

namespaced
)]
#[serde(rename_all = "camelCase")]
pub struct ServerSpec {

pub pod_selector: labels::Selector,

pub port: Port,

pub proxy_protocol: Option<ProxyProtocol>,

(/ BUOYANT

#[tokio: :main]
async fn main() -> Result<(), Box<dyn Error>> {
// Build the Kubert runtime (Kubert also has arg-parsing helpers)
let Args { client } = Args::parse();
let runtime = kubert::Runtime::builder()
.with_client(client)
.build()
.await?;

// Start indexing the Server CRD

let index = Index::default();

let servers = runtime.watch_all::<Server>(ListParams::default());
tokio: :spawn(kubert::index: :namespaced(index.clone(), servers));

// Do more stuff, like spawning gRPC servers..

runtime.run().await.map_err(Into::into)

}) BUOYANT

https://github.com/linkerd/linkerd2/tree/
main/policy-controller

) BUOYANT

BUOYANT’S

SERVICEMESH TR S

ACADEMY

Monthly hands-on, engineer-focused
training from the creators of the
service mesh

SIGN UP TODAY!
buoyant.io/sma

Fully managed f’r§‘l LINKERD on any
Kubernetes cluster

Buoyant Cloud automated upgrades, data plane version
tracking, mesh health alerts, and much, much more.

BOOK A DEMO
buoyant.io/demo

) BUOYANT R e

Thanks so much!

Eliza Weisman
Software Engineer, Buoyant

¥ @BuoyantlO @& buoyant.io

